Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Heliyon ; 7(3), 2021.
Article in English | CAB Abstracts | ID: covidwho-1409309

ABSTRACT

Altered expression of long noncoding RNA (lncRNA), longer than 200 nucleotides without potential for coding protein, has been observed in diverse human diseases including viral diseases. It is largely unknown whether lncRNA would deregulate in SARS-CoV-2 infection, causing ongoing pandemic COVID-19. To identify, if lncRNA was deregulated in SARS-CoV-2 infected cells, we analyzed in silico the data in GSE147507. It was revealed that expression of 20 lncRNA like MALAT1, NEAT1 was increased and 4 lncRNA like PART1, TP53TG1 was decreased in at least two independent cell lines infected with SARS-CoV-2. Expression of NEAT1 was also increased in lungs tissue of COVID-19 patients. The deregulated lncRNA could interact with more than 2800 genes/proteins and 422 microRNAs as revealed from the database that catalogs experimentally determined interactions. Analysis with the interacting gene/protein partners of deregulated lncRNAs revealed that these genes/proteins were associated with many pathways related to viral infection, inflammation and immune functions. To find out whether these lncRNAs could be regulated by STATs and interferon regulatory factors (IRFs), we used ChIPBase v2.0 that catalogs experimentally determined binding from ChIP-seq data. It was revealed that any one of the transcription factors IRF1, IRF4, STAT1, STAT3 and STAT5A had experimentally determined binding at regions within -5kb to +1kb of the deregulated lncRNAs in at least 2 independent cell lines/conditions. Our analysis revealed that several lncRNAs could be regulated by IRF1, IRF4 STAT1 and STAT3 in response to SARS-CoV-2 infection and lncRNAs might be involved in antiviral response. However, these in silico observations are necessary to be validated experimentally.

2.
Methods ; 203: 511-522, 2022 07.
Article in English | MEDLINE | ID: covidwho-1364521

ABSTRACT

Recently, the whole world witnessed the fatal outbreak of COVID-19 epidemic originating at Wuhan, Hubei province, China, during a mass gathering in a film festival. World Health Organization (WHO) has declared this COVID-19 as a pandemic due to its rapid spread across different countries within a few days. Several research works are being performed to understand the various influential factors responsible for spreading COVID. However, limited studies have been performed on how climatic and socio-demographic conditions may impact the spread of the virus. In this work, we aim to find the relationship of socio-demographic conditions, such as temperature, humidity, and population density of the regions, with the spread of COVID-19. The COVID data for different countries along with the social data are collected. For the experimental purpose, Fuzzy association rule mining is employed to infer the various relationships from the data. Moreover, to examine the seasonal effect, a streaming setting is also considered. The experimental results demonstrate various interesting insights to understand the impact of different factors on spreading COVID-19.


Subject(s)
COVID-19 , COVID-19/epidemiology , Demography , Disease Outbreaks , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL